Folding in Parallel *manually*

notch1p

August 30, 2024

notch1p

Folding in Parallel

$fold\{l{,}r\}$

• foldl:
$$(\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha$$

• foldr: $(\alpha \to \beta \to \beta) \to \beta \to [\alpha] \to \beta$
Examples:

foldI
$$(\cdot + \cdot) 0 \iota.4$$
= 10foldr \cdots = 10

notch1p

Folding in Parallel

▲□▶ ▲□▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ かへで August 30, 2024 2/19 how do they look?

notch1p

Folding in Parallel

Sequential BAD

Compare:

 (((0+1)+2)+3)+4 sequential
 O(n)

 ((0+1)+(2+3+4) parallel
 $\Omega(\log n), O(n)$

In other words, we would like to insert + between elements. Languages like APL/J already do this:

(+/ % #) 1 2 3 4 5 NB. 3. uses implicit fork.

Consider a more general case:

$$((a \circ p b) \circ p c) \circ p d \stackrel{?}{=} (a \circ p b) \circ p(c \circ p d)$$

When does the equation hold?

notch1p

Folding in Parallel

monoid

• Monoid: A (carrier) set with an associative binary operation op and a unit element.

notch1p

Folding in Parallel

reduce

```
In other words,

class Monoid (\alpha: Type) where

zero: \alpha

op: \alpha \rightarrow \alpha \rightarrow \alpha

e.g. for +,

instance m_nat_add : Monoid Nat := \langle 0, (\cdot + \cdot) \rangle

reduce: A fold-like operation that reduces over a monoid. We expect

reduce :: \alpha => Manaid \alpha > [\alpha] > \alpha
```

reduce :: α	\Rightarrow Monoid $\alpha \rightarrow [\alpha] \rightarrow \alpha$,
reduce m nil	$\equiv m$.zero,
reduce $m[x]$	$\equiv x$.

Then summing over $\iota.4$ would be

```
reduce \langle 0, (\cdot + \cdot) \rangle ~ [1,2,3,4] \equiv 1+2+3+4
```

+ in some languages (e.g. CL) is already Monoidic and their implementation of reduce takes advantages from it. $\mathbb{R} \to \mathbb{R} \to \mathbb{R} \to \mathbb{R}$

Folding in Parallel

August 30, 2024

6/19

Sequential version of reduce:

```
def reduce [m: Monoid α] (xs: List α): α ≔
  match xs with
        [] ⇒ Monoid.zero
        [x] ⇒ x
        [ x::xs ⇒ Monoid.op x (reduce xs)
```

How about parallel? Split list to smaller list:

```
class ListSlice (α : Type) where
    l: List α
    start: Nat
    finish: Nat
```

parallel reduce

```
Parallel:
def parreduce [Inhabited α] (m : Monoid α) (xs : ListSlice α) : α ≔
    match xs.finish + 1 - xs.start with
      0 \Rightarrow m.zero
      1 \Rightarrow xs.l.get! xs.start
      2 \Rightarrow m.op (xs.l.get! xs.start) (xs.l.get! (xs.start + 1))
      3 \Rightarrow
        m.op
             (m.op (xs.l.get! xs.start) (xs.l.get! (xs.start + 1)))
             (xs.l.get! (xs.start + 2))
     n + 4 \Rightarrow
        let n' := (n + 4) / 2
         let first half := {xs with finish := xs.start + n' - 1}
         let second half := {xs with start := xs.start + n'}
        M.OD
             (parreduce m first half)
             (parreduce m second half)
```

No data dependency i.e. Invocations can be done in parallel.

8/19

compose monoid

Consider (foldr #'- 0 (iota 4)) ; \Rightarrow ((1- (2- (3- (4- x)))) 0), (n-) can be seen as a function. (CL does have 1- 1+) Or generally,

foldr (n-)
$$z \ l \ \iota . n = (n-)^{\circ n-1} z$$

• how about constructing monoid from function composition... Obviously,

$$(f \circ g) \circ h = f \circ (g \circ h)$$
$$id \circ f = f \circ id = f$$

Thus we obtain instance compose_monoid : Monoid ($\alpha \rightarrow \alpha$) := (id, λ f g x \Rightarrow f (g x)) Key idea: \circ is associative.

notch1p

Folding in Parallel

August 30, 2024 9/19

But how do we make (n-), or generally, a bivariate function with its lvalue pre-filled?

• *Partial Application*. Very easy in a curried language.

Now foldr would be

def foldr (f: $\alpha \rightarrow \beta \rightarrow \beta$) (init: β) (xs: List α): $\beta :=$ f <⇒ xs ▷ reduce compose_monoid < init

foldl is tricky:

(foldl #'- 0 (iota 4)) : \Rightarrow ((-4 (-3 (-2 (-1 x)))) 0).

since it's (f init xs_i) instead of (f xs_i init). Meaning we'll pre-fill rvalue without evaluating the whole call.

> def fold left (f: $\alpha \rightarrow \beta \rightarrow \alpha$) (init: α) (xs: List β): $\alpha :=$ $(\lambda x \Rightarrow \lambda \text{ init } \Rightarrow f \text{ init } x)$ (\$\stars x) ▷ reduce compose monoid

- A practical implementation of mapReduce is to fuse map and reduce together. Much efficient than what we have now.
- We write them separately for sake of clarity.

notch1p

Folding in Parallel

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ August 30, 2024

10/19

Performance: 🛓

A length of n list yields a composition of n closures. A closure takes up several words of heap space. Heap be like: \bigcirc

notch1p

Folding in Parallel

4回 ト 4 日 ト 4 三 ト 4 三 ト 三 かへで August 30, 2024 11 / 19

folding, Efficiently

To do this efficiently:

 ${\ }$ ${\ }$ factor out the folding function f in terms of

$$f z l = \operatorname{op} z (g l)$$

• requires ingenuity

e.g. length of a list: l.foldl ($\lambda \times = \Rightarrow \times + 1$) 0 With mapReduce, that is l.map (Function.const Int 1) \triangleright reduce $\langle 0, (\cdot + \cdot) \rangle$ where

•
$$g = (x : \mathsf{Int} \mapsto 1)$$

notch1p

Folding in Parallel

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 今 9 0 August 30, 2024 12 / 19

Principle: Conjugate Transform

Guy Steele: the general principle/schema to transform a foldl is

fold
$$(f: \alpha \to \beta \to \alpha) \ (z: \alpha) \ (l: \beta) = map \ (g: \beta \to \sigma) \ l$$

 \triangleright reduce $(m: Monoid \ \sigma)$ (1)
 $\triangleright (h: \sigma \to \alpha)$

- g, h depends on f, z.
- σ shall be a "bigger" type that embeds α , β and there exists some associative operation and a unit element for it. In before we chose COMPOSE_MONOId and $\alpha \rightarrow \alpha$ as type σ to obtain a generalized fold.

But how to find this σ , or broadly, how to find the corresponding monoid for f?

notch1p

Folding in Parallel

example: subtract

(+) is very nice. $(\mathbb{Z}, +)$ forms a abelian group. What about (-): • fold (-) 10 $\iota.4 = 10 - (1 + 2 + 3 + 4) = 10 - \text{fold}(+) 0 \iota.4$ thus fold (-) $z \ l = z - \text{reduce } \langle 0, (+) \rangle \ l$ • foldr...? foldr (-) $z \iota 4 = 1 - (2 - (3 - (4 - z))) = 1 - 2 + 3 - 4 + z$ **instance** sub monoid : Monoid (Int × Bool) where zero := (0, true) op := fun $\langle x_1, b_1 \rangle \langle x_2, b_2 \rangle \Rightarrow$ (if b_1 then $x_1 + x_2$ else $x_1 - x_2$, $b_1 = b_2$) def int foldr sub (init: Int) (xs: List Int) : Int := let fst := (fun x: Int \Rightarrow (x, false)) xs ▷ reduce sub monoid ▷ Prod.fst if xs.length &&& 1 = 0 then init + fst else init - fst < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ notch1p Folding in Parallel August 30, 2024 14/19

example: Horner Rule

How do we parse ints:

s.foldl (fun acc c \Rightarrow acc * 10 + (c.toNat - '0'.toNat)) 0 that is, for a char sequence s, we have

parseInt
$$s = \sum s_i \cdot r^i$$
 where $r = 10$
= b_n (Horner Rule)

where b is recursively defined:

$$b_0 = 0 \cdot r + s_0$$

$$b_1 = b_0 \cdot r + s_1$$

$$\vdots$$

$$b_n = b_{n-1} \cdot r + s_n$$

This recursive process is called horner rule.

notch1p

Folding in Parallel

We'll build a monoid for the (non-associative) $(a, c) \mapsto a \cdot 10 + c$ (suppose we've mapped the chars to its codepoint) Consider "071":

parseInt 071 =
$$(\underbrace{(0 \cdot 10 + 0) \cdot 10}_{a \cdot 10} + 7) \cdot 10 + 1$$

• op =
$$x, y \mapsto x \cdot r' + y$$
 where r' could be 100, 1000, ...
We need to track r' :

• op = $(x, b_1), (y, b_2) \mapsto (x \cdot b_2 + y, b_1 \cdot b_2)$. (easy to prove associative)

• has the unit (0,1) where $(x,b) \operatorname{op}(0,1) = (0,1) \operatorname{op}(x,b) = (x,b)$ Thus we obtain

instance horner_monoid: Monoid (Nat × Nat) := $\langle (0,1), \lambda (x, r_1) (y, r_2) \Rightarrow (x * r_2 + y, r_1 * r_2) \rangle$

notch1p

Folding in Parallel

We denote left composition i.e. $f, g \mapsto (x \mapsto f x \triangleright g)$ as \rightsquigarrow for the sake of brevity:

def comp_left (f: $\alpha \rightarrow \beta$) (g: $\beta \rightarrow \gamma$): $\alpha \rightarrow \gamma := (\lambda \ x \Rightarrow f \ x \triangleright g)$ infixl: 20 " \rightarrow " \Rightarrow comp_left

And we get a parallel version of parseInt: (much redundant cost here, but thats just a lean problem)

```
def parseInt_alt : String -> Nat :=

String.toList

\Rightarrow List.map (\lambda c \Rightarrow c.toNat - '0'.toNat)

\Rightarrow List.map (\lambda x \Rightarrow (x, 10)) -- g

\Rightarrow reduce horner_monoid

\Rightarrow Prod.fst -- h
```

< □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ < つへぐ

generalizing horner rule

What about a general version of horner_monoid i.e.

$$\forall f, \exists m \ (m: \mathsf{Monoid}, f: (\alpha \to \beta \to \alpha) \to f \ z \ x = m. \ \mathsf{op} \ (h \ z) \ x)$$

This is similiar to that in the last section as both involves composition. **instance** hmonoid [Monoid α] : Monoid ($\alpha \times (\alpha \rightarrow \alpha)$) where zero := (Monoid.zero, id) op := $\lambda \langle x_1, f_1 \rangle \langle x_2, f_2 \rangle \Rightarrow$ (Monoid.op (f_2, x_1) $x_2, f_1 \Rightarrow f_2$)

An efficient implementation will replace $\alpha \to \alpha$ with a value if possible. e.g. in parseInt f_1 , f_2 is just (· × 10). It can be represented by that 10 instead of a function; and the composition is represented by the product of which.

notch1p

Folding in Parallel

finding monoid examples of finding monoid

fin

Thank You

see Oleg Kiselyov's article, Guy Steele's ICFP 2009 Talk notch1p Fol

Folding in Parallel