
Folding in Parallel
manually

notch1p

August 30, 2024

notch1p Folding in Parallel August 30, 2024 1 / 19



intro: fold vs. reduce sequential vs. parallel

fold{l,r}

foldl: (α → β → α) → α → [β] → α

foldr: (α → β → β) → β → [α] → β

Examples:

foldl (·+ ·) 0 ι.4 = 10

foldr · · · = 10

notch1p Folding in Parallel August 30, 2024 2 / 19



intro: fold vs. reduce sequential vs. parallel

how do they look?

foldl (·+ ·) 0 ι.4 ⇐⇒ (((0 + 1) + 2) + 3) + 4

foldr · · · ⇐⇒ 1 + (2 + (3 + (4 + 0)))

+

+

+

+

0 1

2

3

4

(a) foldl

+

1 +

2 +

3 +

4 0
(b) foldr

notch1p Folding in Parallel August 30, 2024 3 / 19



intro: fold vs. reduce sequential vs. parallel

Sequential BAD

Compare:
1 (((0 + 1) + 2) + 3) + 4 sequential O(n)
2 (0 + 1) + (2 + 3 + 4) parallel Ω(log n),O(n)

In other words, we would like to insert + between elements.
Languages like APL/J already do this:
(+/ % #) 1 2 3 4 5 NB. 3. uQes implicit fork.
Consider a more general case:

((a op b) op c) op d ?
= (a op b) op(c op d)

When does the equation hold?

notch1p Folding in Parallel August 30, 2024 4 / 19



intro: fold vs. reduce monoid reduce

monoid

op : S → S → S must satisfy ∀a, b, c, i ∈ S,

(a op b) op c = a op(b op c), Associativity
a op i = i op a = a. Identity

Monoid: A (carrier) set with an associative binary operation op
and a unit element.

notch1p Folding in Parallel August 30, 2024 5 / 19



intro: fold vs. reduce monoid reduce

reduce
In other words,

class Monoid (α: Type) where
zero: α
op: α -> α -> α

e.g. for +,
instance m_nat_add : Monoid Nat .= ⟨0, (· + ·)⟩

reduce: A fold-like operation that reduces over a monoid. We expect

reduce :: α ⇒ Monoid α → [α] → α,

reduce m nil ≡ m.zero,
reduce m [x] ≡ x.

Then summing over ι.4 would be

reduce 〈0, (·+ ·)〉 [1, 2, 3, 4] ≡ 1 + 2 + 3 + 4

+ in some languages (e.g. CL) is already Monoidic and their
implementation of reduce takes advantages from it.

notch1p Folding in Parallel August 30, 2024 6 / 19



intro: fold vs. reduce monoid reduce

Sequential version of reduce:
def reduce [m: Monoid α] (xs: List α): α .=

match xs with
| [] .> Monoid.zero
| [x] .> x
| x.:xs .> Monoid.op x (reduce xs)

How about parallel? Split list to smaller list:
class ListSlice (α : Type) where

l: List α
start: Nat
finish: Nat

notch1p Folding in Parallel August 30, 2024 7 / 19



intro: fold vs. reduce monoid reduce

parallel reduce

Parallel:
def parreduce [Inhabited α] (m : Monoid α) (xs : ListSlice α) : α .=

match xs.finish + 1 - xs.start with
| 0 .> m.zero
| 1 .> xs.l.get! xs.start
| 2 .> m.op (xs.l.get! xs.start) (xs.l.get! (xs.start + 1))
| 3 .>

m.op
(m.op (xs.l.get! xs.start) (xs.l.get! (xs.start + 1)))
(xs.l.get! (xs.start + 2))

| n + 4 .>
let n' .= (n + 4) / 2
let first_half .= {xs with finish .= xs.start + n' - 1}
let second_half .= {xs with start .= xs.start + n'}
m.op

(parreduce m first_half)
(parreduce m second_half)

No data dependency i.e. Invocations can be done in parallel.
notch1p Folding in Parallel August 30, 2024 8 / 19



folding with reduce generic, yet of little practical use

compose monoid

Consider (foldr #'- 0 (iota 4)) ; Q> ((1- (2- (3- (4- x)))) 0),
(n-) can be seen as a function. (CL does have 1- 1+) Or generally,

foldr (n-) z l ι.n = (n-)◦n−1 z

how about constructing monoid from function composition…
Obviously,

(f ◦ g) ◦ h = f ◦ (g ◦ h)
id ◦f = f ◦ id = f

Thus we obtain
instance compose_monoid : Monoid (α -> α) .= ⟨id, λ f g x .> f (g x)⟩
Key idea: ◦ is associative.

notch1p Folding in Parallel August 30, 2024 9 / 19



folding with reduce generic, yet of little practical use

But how do we make (n-), or generally, a bivariate function with its
lvalue pre-filled?

Partial Application. Very easy in a curried language.
Now foldr would be

def foldr (f: α -> β -> β) (init: β) (xs: List α): β .=
f ..> xs .> reduce compose_monoid .| init

foldl is tricky:
(foldl #'- 0 (iota 4)) ; Q> ((-4 (-3 (-2 (-1 x)))) 0).
since it’s (f init xs_i) instead of (f xs_i init). Meaning we’ll pre-fill
rvalue without evaluating the whole call.

def fold_left (f: α -> β -> α) (init: α) (xs: List β): α .=
(λ x .> λ init .> f init x) ..> xs
.> reduce compose_monoid .| init

A practical implementation of mapReduce is to fuse map and
reduce together. Much efficient than what we have now.
We write them separately for sake of clarity.

notch1p Folding in Parallel August 30, 2024 10 / 19



folding with reduce generic, yet of little practical use

Performance: 💩

A length of n list yields a composition of n closures.
A closure takes up several words of heap space.
Heap be like: 💀

notch1p Folding in Parallel August 30, 2024 11 / 19



finding monoid conjugate transform

folding, Efficiently

To do this efficiently:
factor out the folding function f in terms of

f z l = op z (g l)

requires ingenuity
e.g. length of a list: l.foldl (λ x _ .> x + 1) 0
With mapReduce, that is
l.map (Function.const Int 1) .> reduce ⟨0, (· + ·)⟩
where

op = (+)

g = (x : Int 7→ 1)

notch1p Folding in Parallel August 30, 2024 12 / 19



finding monoid conjugate transform

Principle: Conjugate Transform

Guy Steele: the general principle/schema to transform a foldl is

foldl (f : α → β → α) (z : α) (l : β) = map (g : β → σ) l
▷ reduce (m : Monoid σ) (1)
▷ (h : σ → α)

g, h depends on f, z.
σ shall be a “bigger” type that embeds α, β and there exists some
associative operation and a unit element for it. In before we chose
compose_monoid and α → α as type σ to obtain a generalized
fold.

But how to find this σ, or broadly, how to find the
corresponding monoid for f ?

notch1p Folding in Parallel August 30, 2024 13 / 19



finding monoid examples of finding monoid

example: subtract

(+) is very nice. (Z,+) forms a abelian group. What about (−):
foldl (−) 10 ι.4 = 10− (1 + 2 + 3 + 4) = 10− foldl (+) 0 ι.4
thus foldl (−) z l = z − reduce 〈0, (+)〉 l
foldr…?

foldr (−) z ι.4 = 1− (2− (3− (4− z))) = 1− 2 + 3− 4 + z
instance sub_monoid : Monoid (Int × Bool) where

zero .= (0, true)
op .= fun ⟨x₁, b₁⟩ ⟨x₂, b₂⟩ .>

(if b₁ then x₁ + x₂ else x₁ - x₂, b₁ = b₂)

def int_foldr_sub (init: Int) (xs: List Int) : Int .=
let fst .=

(fun x: Int .> (x, false)) ..> xs
.> reduce sub_monoid .> Prod.fst

if xs.length &&& 1 .= 0 then init + fst else init - fst

notch1p Folding in Parallel August 30, 2024 14 / 19



finding monoid examples of finding monoid

example: Horner Rule

How do we parse ints:
s.foldl (fun acc c .> acc * 10 + (c.toNat - '0'.toNat)) 0

that is, for a char sequence s, we have

parseInt s =
∑

si · ri where r = 10

= bn (Horner Rule)

where b is recursively defined:

b0 = 0 · r + s0
b1 = b0 · r + s1...
bn = bn−1 · r + sn

This recursive process is called horner rule.

notch1p Folding in Parallel August 30, 2024 15 / 19



finding monoid examples of finding monoid

We’ll build a monoid for the (non-associative) (a, c) 7→ a · 10 + c
(suppose we’ve mapped the chars to its codepoint) Consider “071”:

parseInt 071 = ((0 · 10 + 0) · 10︸ ︷︷ ︸
a·10

+7) · 10 + 1

op = x, y 7→ x · r′ + y where r′ could be 100, 1000, …
We need to track r′:
op = (x, b1), (y, b2) 7→ (x · b2 + y, b1 · b2). (easy to prove associative)
has the unit (0, 1) where (x, b) op(0, 1) = (0, 1) op(x, b) = (x, b)

Thus we obtain
instance horner_monoid: Monoid (Nat × Nat) .=

⟨(0,1), λ (x, r₁) (y, r₂) .> (x * r₂ + y, r₁ * r₂)⟩

notch1p Folding in Parallel August 30, 2024 16 / 19



finding monoid examples of finding monoid

We denote left composition i.e. f, g 7→ (x 7→ f x▷ g) as ⇝ for the sake of
brevity:

def comp_left (f: α -> β) (g: β -> γ): α -> γ .= (λ x .> f x .> g)
infixl: 20 " .> " .> comp_left

And we get a parallel version of parseInt:
(much redundant cost here, but thats just a lean problem)

def parseInt_alt : String -> Nat .=
String.toList
.> List.map (λ c .> c.toNat - '0'.toNat)
.> List.map (λ x .> (x, 10)) -- g
.> reduce horner_monoid
.> Prod.fst -- h

notch1p Folding in Parallel August 30, 2024 17 / 19



finding monoid examples of finding monoid

generalizing horner rule

What about a general version of horner_monoid i.e.

∀f, ∃m (m : Monoid, f : (α → β → α) → f z x = m. op (h z) x)

This is similiar to that in the last section as both involves composition.
instance hmonoid [Monoid α] : Monoid (α × (α -> α)) where

zero .= (Monoid.zero, id)
op .=

λ ⟨x₁, f₁⟩ ⟨x₂, f₂⟩ .>
(Monoid.op (f₂ x₁) x₂, f₁ .> f₂)

An efficient implementation will replace α → α with a value if possible.
e.g. in parseInt f1, f2 is just (· × 10). It can be represented by that 10
instead of a function; and the composition is represented by the
product of which.

notch1p Folding in Parallel August 30, 2024 18 / 19



finding monoid examples of finding monoid

fin

Thank You

see Oleg Kiselyov’s article,
Guy Steele’s ICFP 2009 Talk

notch1p Folding in Parallel August 30, 2024 19 / 19

https://okmij.org/ftp/Algorithms/map-monoid-reduce.html
https://web.archive.org/web/20091229162537/http://research.sun.com/projects/plrg/Publications/ICFPAugust2009Steele.pdf

	intro: fold vs. reduce
	sequential vs. parallel
	monoid reduce

	folding with reduce
	generic, yet of little practical use

	finding monoid
	conjugate transform
	examples of finding monoid


