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intro: fold vs. reduce sequential vs. parallel

fold{l,r}

foldl: (α → β → α) → α → [β] → α

foldr: (α → β → β) → β → [α] → β

Examples:

foldl (·+ ·) 0 ι.4 = 10

foldr · · · = 10
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intro: fold vs. reduce sequential vs. parallel

how do they look?

foldl (·+ ·) 0 ι.4 ⇐⇒ (((0 + 1) + 2) + 3) + 4

foldr · · · ⇐⇒ 1 + (2 + (3 + (4 + 0)))
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intro: fold vs. reduce sequential vs. parallel

Sequential BAD

Compare:
1 (((0 + 1) + 2) + 3) + 4 sequential O(n)
2 (0 + 1) + (2 + 3 + 4) parallel Ω(log n),O(n)

In other words, we would like to insert + between elements.
Languages like APL/J already do this:
(+/ % #) 1 2 3 4 5 NB. 3. uQes implicit fork.
Consider a more general case:

((a op b) op c) op d ?
= (a op b) op(c op d)

When does the equation hold?
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intro: fold vs. reduce monoid reduce

monoid

op : S → S → S must satisfy ∀a, b, c, i ∈ S,

(a op b) op c = a op(b op c), Associativity
a op i = i op a = a. Identity

Monoid: A (carrier) set with an associative binary operation op
and a unit element.
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intro: fold vs. reduce monoid reduce

reduce
In other words,

class Monoid (α: Type) where
zero: α
op: α -> α -> α

e.g. for +,
instance m_nat_add : Monoid Nat .= ⟨0, (· + ·)⟩

reduce: A fold-like operation that reduces over a monoid. We expect

reduce :: α ⇒ Monoid α → [α] → α,

reduce m nil ≡ m.zero,
reduce m [x] ≡ x.

Then summing over ι.4 would be

reduce 〈0, (·+ ·)〉 [1, 2, 3, 4] ≡ 1 + 2 + 3 + 4

+ in some languages (e.g. CL) is already Monoidic and their
implementation of reduce takes advantages from it.
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intro: fold vs. reduce monoid reduce

Sequential version of reduce:
def reduce [m: Monoid α] (xs: List α): α .=

match xs with
| [] .> Monoid.zero
| [x] .> x
| x.:xs .> Monoid.op x (reduce xs)

How about parallel? Split list to smaller list:
class ListSlice (α : Type) where

l: List α
start: Nat
finish: Nat
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intro: fold vs. reduce monoid reduce

parallel reduce

Parallel:
def parreduce [Inhabited α] (m : Monoid α) (xs : ListSlice α) : α .=

match xs.finish + 1 - xs.start with
| 0 .> m.zero
| 1 .> xs.l.get! xs.start
| 2 .> m.op (xs.l.get! xs.start) (xs.l.get! (xs.start + 1))
| 3 .>

m.op
(m.op (xs.l.get! xs.start) (xs.l.get! (xs.start + 1)))
(xs.l.get! (xs.start + 2))

| n + 4 .>
let n' .= (n + 4) / 2
let first_half .= {xs with finish .= xs.start + n' - 1}
let second_half .= {xs with start .= xs.start + n'}
m.op

(parreduce m first_half)
(parreduce m second_half)

No data dependency i.e. Invocations can be done in parallel.
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folding with reduce generic, yet of little practical use

compose monoid

Consider (foldr #'- 0 (iota 4)) ; Q> ((1- (2- (3- (4- x)))) 0),
(n-) can be seen as a function. (CL does have 1- 1+) Or generally,

foldr (n-) z l ι.n = (n-)◦n−1 z

how about constructing monoid from function composition…
Obviously,

(f ◦ g) ◦ h = f ◦ (g ◦ h)
id ◦f = f ◦ id = f

Thus we obtain
instance compose_monoid : Monoid (α -> α) .= ⟨id, λ f g x .> f (g x)⟩
Key idea: ◦ is associative.
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folding with reduce generic, yet of little practical use

But how do we make (n-), or generally, a bivariate function with its
lvalue pre-filled?

Partial Application. Very easy in a curried language.
Now foldr would be

def foldr (f: α -> β -> β) (init: β) (xs: List α): β .=
f ..> xs .> reduce compose_monoid .| init

foldl is tricky:
(foldl #'- 0 (iota 4)) ; Q> ((-4 (-3 (-2 (-1 x)))) 0).
since it’s (f init xs_i) instead of (f xs_i init). Meaning we’ll pre-fill
rvalue without evaluating the whole call.

def fold_left (f: α -> β -> α) (init: α) (xs: List β): α .=
(λ x .> λ init .> f init x) ..> xs
.> reduce compose_monoid .| init

A practical implementation of mapReduce is to fuse map and
reduce together. Much efficient than what we have now.
We write them separately for sake of clarity.
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folding with reduce generic, yet of little practical use

Performance: 💩

A length of n list yields a composition of n closures.
A closure takes up several words of heap space.
Heap be like: 💀
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finding monoid conjugate transform

folding, Efficiently

To do this efficiently:
factor out the folding function f in terms of

f z l = op z (g l)

requires ingenuity
e.g. length of a list: l.foldl (λ x _ .> x + 1) 0
With mapReduce, that is
l.map (Function.const Int 1) .> reduce ⟨0, (· + ·)⟩
where

op = (+)

g = (x : Int 7→ 1)
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finding monoid conjugate transform

Principle: Conjugate Transform

Guy Steele: the general principle/schema to transform a foldl is

foldl (f : α → β → α) (z : α) (l : β) = map (g : β → σ) l
▷ reduce (m : Monoid σ) (1)
▷ (h : σ → α)

g, h depends on f, z.
σ shall be a “bigger” type that embeds α, β and there exists some
associative operation and a unit element for it. In before we chose
compose_monoid and α → α as type σ to obtain a generalized
fold.

But how to find this σ, or broadly, how to find the
corresponding monoid for f ?
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finding monoid examples of finding monoid

example: subtract

(+) is very nice. (Z,+) forms a abelian group. What about (−):
foldl (−) 10 ι.4 = 10− (1 + 2 + 3 + 4) = 10− foldl (+) 0 ι.4
thus foldl (−) z l = z − reduce 〈0, (+)〉 l
foldr…?

foldr (−) z ι.4 = 1− (2− (3− (4− z))) = 1− 2 + 3− 4 + z
instance sub_monoid : Monoid (Int × Bool) where

zero .= (0, true)
op .= fun ⟨x₁, b₁⟩ ⟨x₂, b₂⟩ .>

(if b₁ then x₁ + x₂ else x₁ - x₂, b₁ = b₂)

def int_foldr_sub (init: Int) (xs: List Int) : Int .=
let fst .=

(fun x: Int .> (x, false)) ..> xs
.> reduce sub_monoid .> Prod.fst

if xs.length &&& 1 .= 0 then init + fst else init - fst
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finding monoid examples of finding monoid

example: Horner Rule

How do we parse ints:
s.foldl (fun acc c .> acc * 10 + (c.toNat - '0'.toNat)) 0

that is, for a char sequence s, we have

parseInt s =
∑

si · ri where r = 10

= bn (Horner Rule)

where b is recursively defined:

b0 = 0 · r + s0
b1 = b0 · r + s1...
bn = bn−1 · r + sn

This recursive process is called horner rule.
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finding monoid examples of finding monoid

We’ll build a monoid for the (non-associative) (a, c) 7→ a · 10 + c
(suppose we’ve mapped the chars to its codepoint) Consider “071”:

parseInt 071 = ((0 · 10 + 0) · 10︸ ︷︷ ︸
a·10

+7) · 10 + 1

op = x, y 7→ x · r′ + y where r′ could be 100, 1000, …
We need to track r′:
op = (x, b1), (y, b2) 7→ (x · b2 + y, b1 · b2). (easy to prove associative)
has the unit (0, 1) where (x, b) op(0, 1) = (0, 1) op(x, b) = (x, b)

Thus we obtain
instance horner_monoid: Monoid (Nat × Nat) .=

⟨(0,1), λ (x, r₁) (y, r₂) .> (x * r₂ + y, r₁ * r₂)⟩
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finding monoid examples of finding monoid

We denote left composition i.e. f, g 7→ (x 7→ f x▷ g) as ⇝ for the sake of
brevity:

def comp_left (f: α -> β) (g: β -> γ): α -> γ .= (λ x .> f x .> g)
infixl: 20 " .> " .> comp_left

And we get a parallel version of parseInt:
(much redundant cost here, but thats just a lean problem)

def parseInt_alt : String -> Nat .=
String.toList
.> List.map (λ c .> c.toNat - '0'.toNat)
.> List.map (λ x .> (x, 10)) -- g
.> reduce horner_monoid
.> Prod.fst -- h
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finding monoid examples of finding monoid

generalizing horner rule

What about a general version of horner_monoid i.e.

∀f, ∃m (m : Monoid, f : (α → β → α) → f z x = m. op (h z) x)

This is similiar to that in the last section as both involves composition.
instance hmonoid [Monoid α] : Monoid (α × (α -> α)) where

zero .= (Monoid.zero, id)
op .=

λ ⟨x₁, f₁⟩ ⟨x₂, f₂⟩ .>
(Monoid.op (f₂ x₁) x₂, f₁ .> f₂)

An efficient implementation will replace α → α with a value if possible.
e.g. in parseInt f1, f2 is just (· × 10). It can be represented by that 10
instead of a function; and the composition is represented by the
product of which.
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finding monoid examples of finding monoid

fin

Thank You

see Oleg Kiselyov’s article,
Guy Steele’s ICFP 2009 Talk
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https://okmij.org/ftp/Algorithms/map-monoid-reduce.html
https://web.archive.org/web/20091229162537/http://research.sun.com/projects/plrg/Publications/ICFPAugust2009Steele.pdf
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