Folding in Parallel

manually

notchlp

August 30, 2024

notchlp Folding in Parallel August 30, 2024

1/19



intro: fold vs. reduce sequential vs. parallel

fold{1,r}

o foldl: (a—=>p—a)—a—=[fl—a

o foldr: (a—=>p—=p)—=p—]a]—0
Examples:
foldl (-4+-) 0 ¢4
foldr
notchlp Folding in Parallel

August 30, 2024

2/19



intro: fold vs. reduce sequential vs. parallel

how do they look?

foldl (- +-) 0 ¢4 <~ ((0+1)+2)+3)+4
foldr - = 1+ 2+ @B+ (4+0)
- +
/ A\ / N\
+ 4 1 +
/ N\ / A\
+ 3 2+
/ A\ / A\
+ 2 3+
/N / N\
0 1 4 0
(a) foldl (b) foldr
notchlp Folding in Parallel August 30, 2024

3/19



intro: fold vs. reduce sequential vs. parallel

Sequential BAD

Compare:
@ ((0+1)+2)+3)+4 sequential O(n)
@ O0+1)+(2+3+4) parallel Q(log n), O(n)

In other words, we would like to insert + between elements.
Languages like APL/J already do this:
(+/ % #) 1 23 45 NB. 3. uses implicit fouk.

Consider a more general case:

((aopb)opc)opd = (aopb)op(cop d)

When does the equation hold?

notchlp Folding in Parallel August 30, 2024

4/19



intro: fold vs. reduce  monoid reduce

monoid

op:S— S— Smust satisfy Va, b, c,7 € S,

(aop b)op c= aop(bop c), Associativity

aopi=iopa= a. Identity

o Monoid: A (carrier) set with an associative binary operation op
and a unit element.

notchlp Folding in Parallel August 30, 2024 5/19



intro: fold vs. reduce  monoid reduce

reduce

In other words,
class Monoid (a: Type) where
zero: a
op: a -> 0 ->a
e.g. for +,
instance m_nat_add : Monoid Nat := <0, (- + -))

reduce: A fold-like operation that reduces over a monoid. We expect

reduce :: « = Monoid a — [a] — a,
reduce m nil = m.zero,
reduce m [z =1

Then summing over ¢.4 would be
reduce (0, (-+-)) [1,2,3,4|=1+2+3+4

+ in some languages (e.g. CL) is already Monoidic and their

implementation of reduce takes advantages from it.
notchlp Folding in Parallel August 30, 2024

6/19



intro: fold vs. reduce

monoid reduce
Sequential version of reduce

def reduce [m: Monoid al (xs: List a): a
match xs with

| [1] = Monoid.zero

| [x] = x

| x::xs = Monoid.op x (reduce xs)
How about parallel? Split list to smaller list:
class ListSlice (o : Type) where
1: List a
start: Nat
finish: Nat

notchlp

(=)
Folding in Parallel

August 30, 2024

7/19



intro: fold vs. reduce  monoid reduce

parallel reduce

Parallel:

def parreduce [Inhabited a] (m : Monoid a) (xs : ListSlice a) : a :=
match xs.finish + 1 - xs.start with
| ® = m.zero
= xs.l.get! xs.start

[ 1
| 2 = m.op (xs.l.get! xs.start) (xs.l.get! (xs.start + 1))
| 3=

m.op
(m.op (xs.l.get! xs.start) (xs.l.get! (xs.start + 1)))
(xs.l.get! (xs.start + 2))
| n+ 4=
letn' :==(n+4)/2
let first_half := {xs with finish
let second_half := {xs with start
m.op
(parreduce m first_half)
(parreduce m second_half)

Xs.start + n' - 1}
Xs.start + n'}

No data dependency i.e. Invocations can be done in parallel.

notchlp Folding in Parallel August 30, 2024 8/19



folding with reduce  generic, yet of little practical use

compose monoid

Consider (foldr #'- @ (iota 4)) ; = ((1- (2- (3- (4- x)))) 0),
(n-) can be seen as a function. (CL does have 1- 1+) Or generally,

foldr (n-) z1t.n= (n-)°""! 2

o how about constructing monoid from function composition...

Obviously,

(fog)oh=fo(goh)
idof= foid = f
Thus we obtain
instance compose _monoid : Monoid (o -> a) := {id, A f g x = f (g x))
Key idea: o is associative.

notchlp Folding in Parallel August 30, 2024 9/19



folding with reduce  generic, yet of little practical use

But how do we make (N-), or generally, a bivariate function with its
lvalue pre-filled?

o Partial Application. Very easy in a curried language.

Now foldr would be
def foldr (f: a -> B -> B) (init: B) (xs: List a): B =
f <$> xs > reduce compose_monoid < init
foldl is tricky:
(foldl #'- @ (iota 4)) ; = ((-4 (-3 (-2 (-1 x)))) 0).
since it’s (f init xs_i) instead of (f xs_i init). Meaning we’ll pre-fill
rvalue without evaluating the whole call.

def fold_left (f: a -> B -> a) (init: a) (xs: List B): a :=
(L x = A init = f init x) < xs
> reduce compose_monoid < init

o A practical implementation of mapReduce is to fuse map and
reduce together. Much efficient than what we have now.

o We write them separately for sake of clarity.

notchlp Folding in Parallel August 30, 2024 10/19



folding with reduce generic, yet of little practical use

Performance: &

A length of n list yields a composition of n closures.

A closure takes up several words of heap space.
Heap be like: &3

notchl Folding in Parallel August 30, 2024 11/19
P



finding monoid  conjugate transform

folding, Efficiently

To do this efficiently:

o factor out the folding function fin terms of
fzl=opz(gl)

o requires ingenuity
e.g. length of a list: 1.foldl (A x _ = x +1) 0
With mapReduce, that is
1.map (Function.const Int 1) > reduce <0, (- + -))

where
0 op = (+)
o g=(z:Int—1)

notchlp Folding in Parallel August 30, 2024

12/19



finding monoid  conjugate transform

Principle: Conjugate Transform

Guy Steele: the general principle/schema to transform a foldl is

foldl (f:a—f8—a) (z:a) (I:5)=map (¢g: 8 —0) 1
> reduce (m : Monoid o) (1)
> (h:o— )

o g, h depends on f, z.

o o shall be a “bigger” type that embeds «, § and there exists some
associative operation and a unit element for it. In before we chose
compose_monoid and a — « as type o to obtain a generalized
fold.

But how to find this o, or broadly, how to find the
corresponding monoid for f 7

notchlp Folding in Parallel August 30, 2024 13/19



finding monoid  examples of finding monoid

example: subtract

(4) is very nice. (Z,+) forms a abelian group. What about (—):

o foldl (=) 10 t.4=10—(1+2+3+4) =10 —foldl (+) 0 ¢.4
thus foldl (=) z I = 2 — reduce (0, (+)) I
o foldr..?
foldr (=) z0d=1-(2-83-(4—2))=1—-24+3—-4+z
instance sub_monoid : Monoid (Int x Bool) where
zero = (0, true)

op = fun {(Xi:, bi) {X2, b2) =
(lf b: then x: + X2 else xi1 - X2, b1 = bz)

def int_foldr_sub (init: Int) (xs: List Int) : Int :=
let fst
(fun x: Int = (x, false)) <% xs
> reduce sub_monoid > Prod.fst
if xs.length &&& 1 = 0 then init + fst else init - fst

notchlp Folding in Parallel August 30, 2024

14/19



finding monoid examples of finding monoid

example: Horner Rule

How do we parse ints:
s.foldl (fun acc ¢ = acc * 10 + (c.toNat - '0'.toNat)) O

that is, for a char sequence s, we have

parselnt s = Z s; - ¥ where r = 10
= by (Horner Rule)

where b is recursively defined:

50:0-7’ + So
bl?bO'T + 51

bp=">bp1-17 + 35,
This recursive process is called horner rule.

notchl Folding in Parallel August 30, 2024 15/19
P



finding monoid examples of finding monoid

We’ll build a monoid for the (non-associative) (a,c) — a-10+ ¢
(suppose we’ve mapped the chars to its codepoint) Consider “071”:

parselnt 071 = ((0-10+0) - 1047) - 10+ 1

~—_—
a-10

o op=ux,y+— x- 7 + y where 7 could be 100, 1000, ...
We need to track 7':

0 op = (2, b1), (y, b2) = (x- b+ y, by - b2). (easy to prove associative)
o has the unit (0,1) where (z, b) op(0,1) = (0,1) op(z, b) = (z, b)
Thus we obtain

instance horner_monoid: Monoid (Nat x Nat) :==
0,1), X (x, r1) (y, r2) = (x *krs +y, ri *xra))

notchlp Folding in Parallel August 30, 2024 16 /19



finding monoid  examples of finding monoid

We denote left composition i.e. f, g— (z+— fz> g) as ~~ for the sake of
brevity:
def comp_left (f: o ->B) (g: B ->y):a >y :=Qx=fx>g)
infixl: 20 " ~ " = comp_left
And we get a parallel version of parselnt:
(much redundant cost here, but thats just a lean problem)
def parseInt_alt : String -> Nat :=
String.tolList
~> List.map (A ¢ = c.toNat - '0'.toNat)
~> List.map (A x = (x, 10)) -- g
~> reduce horner_monoid
~> Prod.fst -- h

notchlp Folding in Parallel August 30, 2024 17/19



finding monoid examples of finding monoid

generalizing horner rule

What about a general version of horner_monoid i.e.
Vf,3m (m: Monoid, f: (¢ = = a) = fzx=m.op (h 2) z)

This is similiar to that in the last section as both involves composition.

instance hmonoid [Monoid a] : Monoid (a x (o -> a)) where
zero := (Monoid.zero, id)
op =
A <X1, 'F1> <X2, 'F2> =
(Monoid.op (f2 Xi) X2, f1 ~> f2)

An efficient implementation will replace o — « with a value if possible.
e.g. in parselnt fi, f is just (- x 10). It can be represented by that 10
instead of a function; and the composition is represented by the
product of which.

notchlp Folding in Parallel August 30, 2024 18/19



finding monoid examples of finding monoid

fin

Thank You

see Oleg Kiselyov’s article,
Guy Steele’s ICFP 2009 Talk

notchlp Folding in Parallel

August 30, 2024

19/19


https://okmij.org/ftp/Algorithms/map-monoid-reduce.html
https://web.archive.org/web/20091229162537/http://research.sun.com/projects/plrg/Publications/ICFPAugust2009Steele.pdf

	intro: fold vs. reduce
	sequential vs. parallel
	monoid reduce

	folding with reduce
	generic, yet of little practical use

	finding monoid
	conjugate transform
	examples of finding monoid


